lunes, 18 de enero de 2010

La Teoría Cuántica cuestiona la naturaleza de la realidad


La descripción física del mundo basada en la idea de una realidad separable ¡falla!


En un artículo anterior, explicamos que La Teoría Cuántica es una teoría netamente probabilista. En esta entrega descubrimos que el Principio de Determinismo de la Física no es aplicable a los sistemas descritos a través de la Teoría Cuántica. Asimismo, que cuánticamente el proceso de medida afecta al estado sobre el que se mide, y además lo hace de una manera impredecible, lo que constituye uno de los problemas de interpretación más serios de la Teoría Cuántica. Finalmente descubrimos que una descripción de los fenómenos basada en la Teoría Cuántica obliga a replantear al menos una de las dos premisas que sustentan la idea de la realidad separable. Por Mario Toboso.



Una de las principales pretensiones de la Física es el estudio de la “evolución” de los estados de un sistema. Al estudiar la evolución de cualquier sistema resulta interesante la predicción de su estado en un instante futuro. Esta labor se apoya en el denominado “Principio de Determinismo”, el cual afirma que si en un instante dado son conocidas con precisión arbitrariamente grande:

1. Las posiciones y velocidades de todas las partículas del sistema, es decir, su “estado” en ese instante.

y 2. El conjunto total de influencias, tanto internas como externas, a que quedan sometidas.

Entonces es posible “determinar”, a través de las ecuaciones de movimiento, el estado del sistema en cualquier instante posterior.

Tres ejemplos

Veamos cómo funciona el Principio de Determinismo en los tres casos siguientes:

A. La evolución de los planetas en sus órbitas.
B. La evolución de las nubes y las masas de aire.
C. La evolución de los sistemas atómicos.

Los casos A y B corresponden a sistemas macroscópicos (clásicos) en cuyo estudio no resulta necesario aplicar la Teoría Cuántica. No sucede así en el caso C, como ya hemos visto en nuestro artículo anterior.

En A es posible hallar con precisión arbitrariamente grande tanto 1 como 2, de ahí los buenos resultados experimentales y predictivos de la Astronomía, que se ilustran por ejemplo en el descubrimiento de Neptuno en 1846 a partir de los cálculos teóricos realizados por Le Verrier.

En el caso B la situación es un poco más complicada, y puede llegar a determinarse 1 pero no 2, es decir, conocemos con precisión la posición y velocidad de una masa de aire en un instante dado, pero no el conjunto total de influencias a que está sometida, de ahí que en Meteorología las predicciones no sean del todo satisfactorias a medio y largo plazo. Se trata de una “limitación subjetiva”, es decir, una falta de conocimiento de los detalles experimentales por nuestra parte.

El Principio de Indeterminación de Heisenberg

En el caso C resulta imposible cumplir la condición 1 a causa del denominado Principio de Indeterminación de Heisenberg. Este Principio establece que para todo sistema cuántico existen magnitudes físicas denominadas “complementarias”. Que dos magnitudes físicas sean complementarias significa que resulta imposible determinar simultáneamente, con precisión arbitraria, sus valores sobre un mismo estado.

Si, por ejemplo, M y N son dos magnitudes complementarias, y D(M) y D(N) son las respectivas imprecisiones experimentales que se obtienen al realizar la medida de tales magnitudes, entonces la relación de indeterminación de Heisenberg establece que:

D(M) x D(N) > h

(Obsérvese el notable protagonismo de la constante de Planck, h, en este fenómeno cuántico de complementariedad).

De manera que si para un estado particular queremos precisar mucho, por ejemplo la magnitud M, haciendo D(M) más y más pequeño, a cambio, para mantener la validez de la relación anterior (y puesto que h es diferente de cero), deberá aumentar el valor de D(N), volviéndose más imprecisa la medida simultánea de la magnitud complementaria N.